
[Sreenadh, 2(11): November, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3122-3127] 

 

IJESRT 

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 
TECHNOLOGY 

Polymeric Fluid Flow Obeying ECTN Model in an Inclined Circular Tube with 
Permeable Wall     

S. Sreenadh*1, B. Govindurajulu1, A. Parandhama2, E. Sudhakara1   

*1Department of Mathematics, Sri Venkateswara University, Tirupati-517 502, (A.P),  India 
2Dept. of Mathematics, Sree Vidyanikethan Engineering  College,Tirupati-517 502, (A.P), 

  India 
profsreenadh@gmail.com 

Abstract 
In this paper, the flow of a polymeric fluid obeying ECTN (Energetically Cross linked Transient 

Network)model in an inclined circular tube with permeable wall is analyzed. In this study, the rates of segment 
creation and loss formed by physical and energetic interactions are assumed to be constants. The expressions for the 
velocity field and the flow rate are obtained. The results are evaluated numerically for various values of physical 
parameters Nm and . It is found that the flow shows down axially as against Newtonian flow in a circular tube. The 
flow analysis presented for polymeric fluids has applications in understanding the characteristics of semi-dilute and 
concentrated solutions of hydrophilic polymers. 
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Introduction
Several diverse and seemingly unusual 

rheological phenomena such as double stress overshoots, 
maximum in elongation viscosity with stretch rates, 
phase separation in deforming solutions, 
uncharacteristically long restoration times, etc., is 
observed in solutions of polar polymers.  These polymers 
might have a common physical origin, which is related to 
shear-induced modification of the rates of creation and 
loss of energetic transient cross links (hydrogen bonds). 
It is reported that the dynamics of energetic cross links 
(H-bonds) are fundamentally different than those of 
physical cross links (chain entanglements). Some of 
these essential differences are incorporated in a 
phenomenological framework of a transient network 
theory namely the Energetically Cross linked Transient 
Network (ECTN) model. The ECTN model can 
successfully predict double stress overshoots in shear 
flows and the maximum in elongation viscosity with 
stretch rates in elongation flows. 

Biofluid is a fluid that flows in a physiological 
system.  Mucus, saliva, blood, water etc., are some of the 
well-known biofluids in nature.  The medicines 
prescribed by Doctors in the treatment of patients contain 
polymer solutions, which also come under artificial 
biofluid category. 

Seright et al. [1] & [2]. Delshad et al. [3] and 
Seright [4] reported that some polymer solutions may 
exhibit pseudodilatant behavior in porous media.  These 

studies have shown that understanding and modeling of 
polymer rheology in porous media are also important. 
This study also has tried to capture the effects of non-
Newtonian fluid on the sweep, oil recovery, and 
injectivity in the heterogeneous multilayered reservoir. 

This apart, investigations on polymer solution 
have important applications in biology and medicine. 
Some physiological systems such as lung alveolar sheet 
are modeled as channels/tubes with permeable walls 
covered by porous media (see Tang and Fung, [5]). The 
fluid in the physiological systems is assumed to be either 
Newtonian or non-Newtonian depending on the physical 
situation (vide Shukla et al. [6], Chaturani and 
Ponnalagar swamy, [7]). 

Energetically cross linked transient network 
(ECTN) model is used in the present work as developed 
by Lele and Mashelkar [8]. This model is based on the 
assumption that the dynamic of energetic cross links (H-
bonds) are fundamentally different them those of 
physical cross links (chain entanglement) and polymer 
solution consists of two types I = P (Physical) and 
E(Energetic) of inter-penetrating networks formed by 
physical and energetic interactions which account for the 
rates of segment creation and loss. 

In view of several applications, it will be 
interesting to study the polymer fluid (obeying ECTN 
model) flow in a conduit of circular cross section. In the 
polymeric shear flow we assume that thermal variations 
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are small and do not contribute to any segment order of 
change in the energy of the flow. Thus, the problem is 
confined to an isothermal steady shear flow through a 
pipe arising from constant pressure gradient.  The effect 
of various physical parameters on the flow quantities are 
discussed through graphs. 

 
Stress Tensor for ECTN Model  

Let L be the rate of creation of segments of 
length Q at time t and letλi

-1 be the rate of destructions of 

segments of length Q. Let fi ( t ) = Li/Li0 and gi( t ) = λi0
/
λi 

be two non-dimensional parameters for rate of segment 
creation and destruction. Thus, the excess of creation 

over destruction is [fi ( t )-gi( t )].We define the co-
efficient of growth over destruction as 

)(

)()(

tg

tgtf
Cr

i

ii −
=   (1) 

as a general coefficient valid for every i. The appropriate 
modeling of this parameter depends on the nature of 

)(tf and )(tg  this defines the rheological state and the 

properties of the fluid. The contribution of the newly 
formed parameter cr is added to the Oldroyd model (see 
Bird et al. ( [9], [10] ).  The modified stress equation is  
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(2) 
In this equation, the parameter λ8has, 

dimensions of stress. In our studies we include this 
parameter along with the time parameter λ1 to see the 
effect of λ8 over λ1. The other higher order effects are 
ignored. The model then simplifies to the form 

δλγητλτ rC8)1(0)1(1 +−=+   (3) 

Equation (3) can be simplified using the following non-
dimensionalization. 
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 (4) 
with the fluid state parameter λ8 of stress shall 

primarily be such that the term δλ rC8  explains the 

thinning or thickening of the fluid. Thus, it can be 
assumed to be Gi0. This implies that λ8 = 1. 

( ) ( ) ( ) ( ) ( )1 1i i i i iit f t g tg τ τ β γ δ+ = − + −  
   (5) 

where ( )i tf and ( )i tg  are respectively, the rates of 

segment creation and loss for ,i P E= Following, Lele 

and Masheklar [8] 

( ) ( )1 , 1P Pf t g t= =                                                                          

(6)
  
( ) ( )1 2,E Et c g t cf = =                                                               

(7)  
 
Non  Dimensionalization of the Governing 
Equations 

Let , ,V Rρ , β, α are the average density, 

velocity of the fluid, the radius of the circular cylinder, 
permeability parameter and angle of inclination. These 
parameters are primitive variables for any experimental 
studies and form the trio for non – Dimensionalization of 
the motion equation. Thus, we write. 

* * * *
2 2

1 1
, , , , ,

V r R
v v t t p p r R F F

V R V R Vρ ρ
= = = = ∇ = ∇ =

 (8)  
Ignored asterisks, the governing equations can 

be written as 
(a) Equation of Continuity  

. 0v∇ =   (9) 
(b) Equation of Motion  

[ ] [ ]( )
.( ) .

v
v v F

t

ρ ρ π∂ = − ∇ − ∇ +
∂

 (10)  

Where ,p pπ δ τ= +  is an isotropic pressure. 

[ ].
Dv

p F
Dt

ρ τ= −∇ − ∇ +   (11)  

Using non – dimensional parameters, defined in (5) and 
(8), the above equation is written as  
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∑  ,   where 

i=P,E.  (12) 
The above equation is written as  
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We know that Reynolds number 
0

Re
VRρ
η

= and in our 

context it takes the form  
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We define network ratio of creation and 

destruction of segments as 0

0

E

P

G
K

G
= . Thus the equation 

of motion is  
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Dv
p K F

Dt
τ τ = −∇ − ∇ + ∇ +    (15) 

Where F  is the body force  
 
Formulation of the Problem 

The fully developed steady laminar flow of 
polymeric fluid (obeying ECTN model) flow through a 
long in an inclined circular tube with permeable wall is 
analyzed. Here the circular tube is of radius R, length L 
inclined at angle α with the horizontal. The flow is 
maintained by the presence of a constant pressure 
gradient along the axis of the tube. The body forces are 
neglected, cylindrical co-ordinate system is used. Let the 
axis of the tube be taken as z-axis along which the flow 
takes place and r denote the radial distance measure from 
perpendicular to the z-axis. 

 
Fig 1: Physical model 

 
 

 The pressure at the pipe ends at 0z = , z L=  

are 1 2p and p . Thus, the average constant pressure 

gradient is assumed to be 2 1p pdp

dz L

−= . In non-

dimensional form, this becomes 2 1 0

dp
p p

dz
α= − = and 

for flow to be along positive z-axis, 0 0.α <  Since 

pressure gradient is along z-axis, only non – zero 

component of velocity is zv . Due to axial symmetry, 

state and space variables are independent of θ . Thus, we 
postulate that  
 

Governing Equations 

( ) ( ), 0, 0, 0z z rv v r v vθ θ
∂= = = =

∂
 

  (16)  
 The continuity equation (8) and equation of 
motion (15) in cylindrical coordinates reduce to (Vide 
Mujumdar and Sharma [11]) : 
 
a) Continuity Equation  

0zv

z

∂ =
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 (17) 
b) Equations of Motion  
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   (20)  
Simplification of Stresses  
 Equations of stress components as derived from 
constitutive equation (5) for two dimensions in 
cylindrical coordinates for steady state turn out to be  
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v
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r
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( )( ) ( ) ( )i rr i ii
g t f t g tτ = −   ;               

( )( ) ( ) ( )i i ii
g t f t g tθθτ = −    

where ( ) ( )i if t and g t  are constant functions as given 

in equations (6) and (8).  
 Using equations (6) and (8) the above equations 
simplify to  
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Formulation of Model Equations 
 On substituting the above expressions of 
stresses in (18) and (19), we obtain the basic equations in 
the following form : 

1 2
2
2 2
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P

c c dvp d
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βα β
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5. Solutions of the Problem 

Equation (23), simplifies to 
p

r

∂
∂

=0. This gives 

us ( )p F z=  and ( )'
p

F z
z

∂ =
∂

 but 0

p

z
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follows that 0p zα= . Now equation (22) can be written 

as  
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Boundary conditions to be satisfied are  

0, 0zdv
r
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z
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where β is the Permeability parameter  
 

We introduce a modified Reynolds number Nm as  
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The equation of motion (24) thus simplified as  
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The solution is  

20
1
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4 4
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2

4

z
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f
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Deductions and Discussions 
a) As α → 0, Nm → 1, the result (28)  reduces to 
corresponding results of  Hagen-Poiseuille flow of a 
Newtonian fluid in a circular pipe. 
b) Stress distribution: 

Using solution (28) and assuming  stretch rate 

1iβ = , we get 
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(29) 
The steady shear material function can be 

derived as the shear rate dependent viscosity and first 
normal stresses difference at any point are given by  

,z
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           (30) 
 
c) Analysis of Parameter Nm  
 For the parameter Nm defined by (26), it is 

worthwhile to discuss the modified viscosity .mη  This 

modified parameter ,mη  in this case is 

/ mNm RVρ η=  and we know that 0Re /RVρ η= . 

Hence, we obtain  
where
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  (31) 
It is thus seen that the Reynolds number for ordinary 
fluid is greater than the corresponding number modified 
Reynolds number Nm of the same fluid added with 
polymeric matters.  
d) Maximum velocity 

The maximum velocity occurs on the axis of the 
pipe and is given by  

( ) 0
max

( ) sin

2 2z

Nm Nm
v

f

α α= −   

 (32) 
 
Conclusions 

In this paper, analytical expressions are derived 
for velocity vector, the stress components and viscosity 
function in a fully developed cylindrical pipe flow using 
energetically cross linked transient network (ECTN) 
model. The analysis clearly shows that the velocity 
profile depends on the parameters Nm, α0 (average 
constant pressure gradient), β (permeability parameter), 
R(radius), ν (velocity) and Re(Reynolds number). The 
flow shows down axially as against Newtonian flow in a 
cylindrical pipe. 

The variation of velocity profile ( zv ) varies as 

r  is calculated, for different values of α0 and β and is 
shown in Figures 2 and 3 for fixed v =0.3and R=0.02. 
We observe that the velocity increases with increasing α0 
or β. 

The variation of velocity profile ( zv ) varies as 

r  is calculated, for different values of radius R and is 
shown in Fig.4, for fixed α0=-0.01, v =0.3and β =0.1. We 
observe that the velocity increases with the decrease in 
radius R. 

The variation of velocity profile ( ) varies as 

 is calculated, for different values of Re, Nm and α and 
is shown in Figures 5, 6 and 7 for fixed α0=-0.01, v =0.3, 
β=0.1 and R=0.02. We observe that the velocity 
increases with increasing Re or Nm or α. 
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